Patterns, Regular Expressions
and Finite Automata

(LECTURE 5)



Patterns and their defined languages

e S:afinite alphabet

o A pattern is a string of symbols representing a set of strings
In S*.

» The set of all patterns is defined inductively as follows:
1. atomic patterns:

aeS, e #H @.

2. compound patterns: if a and b are patterns, thenso are:a +b,an b, a*, a*, ~
a and a-b.

e For each pattern a, L(a) Is the language represented by a and
Is defined inductively as follows:
l.L(a)={a}, L(e) ={e}, L(@)={}, L#) =S,L(@) =S ™
2. If L(a) and L(b) have been defined, then
L@+b)=L@)UL(D), L@nb)=L@)nL(b).
L(@") =L(a)*, L(@*) = L(a)*,
L(~a)=S*-L(a),L(a-b)=L(a)-L(b).



More on patterns

* We say that a string X matches a pattern a iff x e L(a).

e Some examples:

1. S=L(@) = L(#*)

2. L(x) = {x} forany x e S*

3. for any X;,...,.X, IN S*, L(X;+Xo+...4+X,) = {X{,X5,....X}-

4. {x | x contains at least 3 a’s} = L(@a@a@a@}

5. S{fa}=#n-~a

6. {x | x does not contain a} = (# N ~a)*

7.{x | every ‘@’ in x is followed sometime later by a‘b’ } =
= {x | either no ‘a’ in x or $‘b’ in x followed no ‘a’ }
= (# N ~a)* + @b(# N ~a)*



e Some interesting and important questions:

1. How hard is it to determine if a given input string X matches a given
patterna ?

==> efficient algorithm exists
2. Can every set be represented by a pattern ?
==>no! the set {a"b" | n > O } cannot be represented by any pattern.

3. How to determine if two given patterns a and b are equivalent ?
(l.e., L(a) = L(b)) --- an exercise !
4. Which operations are redundant ?
e=~#nm@)=J*; a*=a-a*
#=a +ta,+.+a,ifS={a,.., a.}
at+tb=~(~a n~b) ;annb=~(~a +~b)
It can be shown that ~ is redundant.



» Recall that regular expressions are those patterns that can be built
from:aeS, e J, +, - and *.
» Notational conventions:
a+ brmeans a + (br)
a+ b*means a + (b*)
a b* means a (b*)

Theorem 8: Let A — S*. Then the followings are equivalent:
1. Aisregular (l.e., A=L(M) for some FAM ),
2. A =L(a) for some pattern a,
3. A = L(b) for some regular expression b.
pf: Trivial part: (3) => (2).
(2) => (1) to be proved now!
(1)=> (3) later.



(2) => (1) : Every set represented by a
pattern iIs regular

Pf: By induction on the structure of pattern a.

Basis: a Is atomic: (by constguction!)

&—O

a=a

a=¢

a=-9g: ‘ ‘
4. a = #: a,b.c

5. a@=#*: Qe_"




Inductive cases: Let M, and M, be any FAs accepting L(b)
and L(g), respectively.

6. a&bg:=> L(a)=L(M;-M,)
7. &b*:=> L(a)=L(M*)

8. &b +g, &~bora=bng:Byind. hyp. band gare regular.
Hence by closure properties of regular languages, a is regular, too.

O. & b*=bb*: Similar to case 8.



Some examples patterns & their equivalent FAs

1. (aaa)* + (aaaaa)*



M=(Q,S,dS, F):aNFA; Xc Q: aset of states; m,neQ : two states

o =4t 1Y € S* | $a path from m to n labeled y and all
Intermediate states € X }.
Note: L(M) =7?

e p*(m, N can be shown to be representable by a regular expr, by
Induction as follows:

LetD(m,n) ={a| (m—a=>n) ed}={a,,..,.a} (k>0)
= the set of symbols by which we can reach from m to n, then
Basic case: X =J:
Llifm=n: p?(m,n={a, a,,...,a, } =L(a, + a,+...+ a,) if k > 0,
={} = L(D) If k=0.
1.2ifm=n:p?(m,n={a,, a,,... a,, e=L(a, + a,+...+ a, +e) if k > O,
= {e} =L(e If k=0.



3. For nonempty X, let g be any state in X, then:
pX(m,n = pi@(m,n Upamg) (p9(qa))* pii(g,n.

By Ind.hyp.(why?), there are regular expressionsa, b, gwith

L([a, b, g)=fp1%(m,n pXta(mg), (PX9(q0)), P9, n]

HencepX(m,n= L(a) UL(b) L(0 *L(r),
=L(a +bdr )
and can be represented as a reg. expr.

e Finally, L(IM)={x|s--x-->f,seS,feF}

- SSES, ¢er PR(s,T), is representable by a regular expression.



Example (9.3): M :
o L(M) = ptrani(p,p) = ptPi(p,p) + ptPr(p,q) (ptP(q,q))* ptt(q,p)
o piP(p,p) =?
o pt*i(p,g) =7
o ptrri(q,q) =7
o prri(g,p) =7
Hence L(M) =?

0 1
>pF  {p} {4}
g U} U
r P} 14}




Another approach

* The previous method
O easy to prove,
o easy for computer implementation, but
o hard for human computation.

* The strategy of the new method:
o reduce the number of states in the target FA and
o encodes path information by regular expressions on the edges.

o until there is one or two states : one is the start state and one is the
final state.



Steps

0. Assume the machine M has only one start state and one final state.
Both may probably be identical.

1. While the exists a third state p that is neither start nor final:

1.1 (Merge edges) For each pair of states (q,r) that has more than 1 edges with

labels t;,t,,...t,,, respectively, than merge these edges by a new one with
regular expressiont=1t;, +t, ... + t,.

1.2 (Replace state p by edges; remove state)

Let (py, a5, P),... (Pn, @, P) Where p; !=p be the collection of all edges in M with
p as the destination state, and

(p,h,9y),....(p, b, q,,) where gj = p be the collection of all edges with p as
the start state. Now the sate p together with all its connecting edges can be
removed and replaced by a set of m x n new edges :

{(p; @i t* by, q) | 1in[1,n]and jin[1,m] }.
The new machine is equivalent to the old one.



» Merge Edges: *Replace state by Edges

asdhb,

Note: {p1,p2,p3} may intersect with {q1,92}.




2. perform 1.1 once again (merge edges)
// There are one or two states now
3 Two cases to consider:
3.1 The final machine has only one state, that is both start

and final. Then if there is an edge labeled t on the
sate,

then t* Is the result, other the resultis e

3.2 The machine has one start state s and one final state f.

Let be the
collection of all edges in the machine, where
means the regular expression or label on the edge from s
to f.

The result then is



>p {p,r} |{q.r}

q {r} {p.q.r}

rF {p.a} [{q.r}

1. another representation




Merge edges

P 1d |
P o |1 |0+1
g |1 |1 |0+1
I 0O |0+1]1




remove Q

0+1

0+1

P g r
0, 1 0+1,
11*1 11* (0+1)
1 1, 0+1
0, 0+1 1,
(0+1) 1*1 (0+1)1%(0+1)




Form the final result

P I
Sp 0+11%1 0+1+11* (0+1)

FE 0+ (0+1) "1 [+ (0+1)1%(0+1)

Finalresult: =[ p—=>p + (p=2r1) (r=>0N* (r->p) I* (p—=2r) (r=>r1) *

[ (0+11*1) +(0+1+11*(0+1)) (1+(0+1)1*(0+1))* (O+(0O+1)1*1) |*
(O+1+1T0+1)H)QL+(0+1)YD+1))



